

Recycling. Disassembly. Circular materials. Reuse.

GRP Recycling

Investigate glass fibre polymer composite recycling technologies able to reclaim greater value fibres from waste than is currently commercially available

Description

- This project will look to investigate fibre reclamation technologies that are applicable to glass
- This could also include reprocessing technologies such as alignment, weaving or resizing
- The primary focus will be recovering valuable fibres using an economically viable route

Background

- Currently only approximately 2% of GRP is recycled
- Commercial recycling routes are limited to grinding or coprocessing in a cement kiln
- These routes significantly reduce the value of the reclaimed glass
- Other routes (e.g. pyrolysis) degrade glass fibres to the point that they are no longer of use

Objectives

- Identify the GRP recycling landscape
- Develop a proof of concept for a new technique
- Test and validate the recyclate produces, and assess the associated business case

Benefits

- Development of economically viable GRP recycling route reclaiming valuable recyclate
- Supply chain for end of life GRP
- Applications for end of life GRP
- Validated properties for the recyclate

Recycling of Consumables & Tooling

Understand the needs and limitations associated with effective end of life solutions for composite manufacturing consumables and tooling

Description

- This project will look to identify the range of materials in need of processing, and the cost implications associated with sending them to landfill
- It will seek and assess a range of potential solutions for minimising or eliminating this
- This could include new, less impactful alternatives, or the development of methods for effective reuse/recycling

Background

- There are numerous wellestablished manufacturing processes for composites, each with consumables
- Selection of these is based on process parameters, volumes, costs etc.
- End of life is rarely taken into consideration
- These materials effect the overall impact of composite part production

Objectives

- Identify currently used materials and volumes
- Research and develop effective, lower impact alternatives to current strategies
- Realise the associated business cases

Benefits

- Development of low impact, low cost consumables and tooling
- End of life strategies reduced landfill costs
- Lower impact composite production (both environmental and cost)

Matrix Reclamation

Develop cost effective recycling technologies that focus on reclaiming the matrix of a composite part, enabling recycling of the entire composite (fibres and resin)

Description

- This project will look to develop methods for effective reclamation/recycling of the polymeric matrix
- This could look into thermal, chemical, or biological recycling methods amongst others
- It will look to draw on the experience of other industries, such as waste processing, or commodity plastics

Background

- The global use of composites is expected to reach \$95bn by 2020
- At current, the predominant focus of composites recycling is on the higher value fibres
- As a result, the value of the matrix is lost during recycling
- There is increasing dive (both from legislation & consumers) for a process capable of recovering value from both

Objectives

- Review current technologies for reclaiming polymeric material (composites and wider)
- Develop, optimise, and scale up a cost effective process
- Realise the associated business case

Benefits

- Develop UK supply chain
- Direct learning from and into commodity plastics recycling
- Gaining value from the matrix
- Help to meet future legislative targets

Applications for Recyclate

Investigate and identify future applications, end users, and potential supply chains for recycled composite materials

Description	Background	Objectives
 This project will look to identify valuable uses for composites recyclate It could look at parts or components that need 	 Current carbon composite recyclate is predominantly short and discontinuous Recycled glass is often grind and only usable as filler Regardless of material, applications are often limited due to format and/or reduced mechanical performance Limited applications result in limited demand, reducing value and cost 	 Identify applications for recyclate families or individual parts and determine feasibility Identify customer-supplier relationships to create a recyclate supply chain Identify the variance that occurs in recyclate
 recycling, and applications for the recyclate produced Alternatively it could to identify solutions needed in industry, and identify potential products that could be recycled into that solution 		 Benefits Monetisation of waste could result in less waste to landfill by giving it value Pairing waste companies with end users could result in a new circular supply chain Lower volumes of virgin materials required

Innovative Reclamation Technologies

Develop, scale up, and commercialise new and innovative composite reclamation technologies with clear advantages versus current commercially available alternatives

Description

- This project will look to identify and develop innovative composite reclamation technologies
- This could include reclamation technologies for different fibres and/or resin systems
- It could also look into novel methods or technologies with a distinct unique selling point.
 E.g. lower energy, in a box, enzymatic etc.

Background

- Current commercial composite recycling methods are limited
- Carbon composites are usually recycled via pyrolysis
- Glass composites are largely recycled by grinding, or coprocessing in a cement kiln
- The recyclate reclaimed in both instances in sub optimal, both in terms of mechanical performance, and in value
- New techniques are needed

Objectives

- Evaluate the current academic and commercial landscape
- Downselect a method against a relevant set of requirements
- Develop, scale up, and demonstrate method

Benefits

- Reclaim fibres with higher value than currently commercially possible
- Develop new recycling technologies that are lower impact
- Help stakeholders meet future legislation

Reprocessing of Reclaimed Fibres

Identify and develop possible and economically favourable reprocessing routes for composite recyclate

Description

- This project will look to develop reprocessing methods that give added value to reclaimed composite recyclate
- This could include alignment technologies, fabric making techniques, and methods for handling reinforcement, amongst others
- It could also look into resizing capability and how this can enhance recyclate usability

Background

- To recycle fibres into a usable format, two steps –
 - reclamation and reprocessing – are required
- A good reprocessing phase can increase the performance of the recyclate produced
- Current existing reprocessing technologies for the creation of high value, high performance recyclate are primarily small scale/academic

Objectives

- Evaluate current reprocessing technologies
- Identify, scale up, and implement a fibre reprocessing technology
- Develop the associated business case
- Determine mechanical performance

Benefits

- Develop UK supply chain
- Direct learning from and into commodity plastics recycling
- Gaining value from the matrix
- Help to meet future legislative targets